The Future of Enterprise Analytics

Over the last couple weeks since the 2016 Hadoop Summit in San Jose, eSage Group has been discussing the future of big data and enterprise analytics.  Quick note – Data is data and data is produced by everything, thus big data is really no longer an important term.

hspeopleeSage Group is specifically focused on the tidal wave of sales and marketing data that is being collected across all channels, to name a few:

  • Websites – Cross multiple sites, Clicks, Pathing, Unstructured web logs, Blogs
  • SEO –  Search Engine, Keywords, Placement, URL Structure, Website Optimization
  • Digital Advertising – Format, Placement, Size, Network
  • Social
    • Facebook – Multiple pages, Format (Video, Picture, GIF), Likes (now with emojis), Comments, Shares, Events, Promoted, Platform (mobile, tablet, PC) and now Facebook Live
    • Instagram – Picture vs Video, Follows, Likes, Comments, Reposts (via 3rd Party apps), LiketoKnow.it, Hashtags, Platform
    • Twitter – Likes, RT, Quoted RT, Promoted, Hashtags, Platform
    • SnapChat – Follows, Unique views, Story completions, Screenshots.  SnapChat to say the least is still the wild west as to what brands can do to engage and ultimately drive behavior.

Then we have Off-Line (Print, TV, Events,  etc). Partners. 3rd Party DataDon’t get me started on International Data. 

Tired yet?

blog

While sales and marketing organizations see the value of analytics, they are hindered by what is accessible from the agencies they work with and by the difficulty of accessing internal siloed data stored across functions within the marketing organization – this includes central corporate marketing, divisional/product groups, field marketing, product planning, market research and operations.

Marketers are hindered by access to the data and the simple issue of not knowing what data is being collected.  Wherever the data lies, it is often controlled by a few select people that service the marketers and don’t necessary know the value of the data they have collected.  Self-service and exploration is not possible yet.

Layer on top this the fact that agile marketing campaigns require real-time data (at least close real time) and accurate attribution/predictive analytics.

So, you can see there are a lot of challenges that face a marketing team, let alone the deployment of an enterprise analytics platform that can service the whole organization.

Now that I have outlined the business challenges, let’s look at what technologies were mentioned at the 2016 Hadoop Summit that are being developed to solve some of these issues.

  • Cloud, cloud, cloud– lots of data can be sent up, then actively used or sent to cold storage on or off prem.  All the big guys have the “best” cloud platform
  • Security – divisional and function roles, organization position, workflow
  • Self-Service tools – ease of data exploration, visualization, costs
  • Machine Learning and other predictive tools
  • Spark
  • Better technical tools to work with Hadoop, other analytics tools and data stores
  • And much more!  

Next post, we will focus on the technical challenges and tools that the eSage Group team is excited about.

Cheers! Tina

 

 

 

Saffron is more than just a spice!

panoramaLast night was the 8th eSage Group co-sponsored Seattle Scalability MeetUp hosted at WhitePages.com. There were about 130 people in attendance to hear about HBase and Saffron. Very cool stuff!! Here is the SlideShare.

Summary:

Nick Dimiduk from Hortonworks, the father of HBase, gave us a sneak peek at what’s in store for the developer using HBase as a backing datastore for web apps. He reviewed the standard HBase client API before going into a framework architecture that makes HBase development more like other frameworks designed for developer productivity. He then went over fundamentals like rowkey design and column family considerations and also dug into how to tap coprocessors to add functionality to apps that otherwise might normally be overlooked.

Nick’s Bio: Nick Dimiduk is an engineer and hacker with a respect for customer-driven products. He started using HBase before it was a thing, and co-wrote HBase in Action to share that experience. He studied Computer Science & Engineering at The Ohio State University, specifically programming languages, and artificial intelligence.

Paul Hofmann from Saffron gave a talk titled “Sense Making And Prediction Like The Human Brain.” It was an amazing presentation on machine learning and predictive analytics. Cool stuff!!

Abstract of Paul’s talk: There is growing interest in automating cognitive thinking, but can machines think like humans? Associative memories learn by example like humans. We present the world’s fastest triple store -SaffronMemory Base- for just in time machine learning. Saffron Memory Base uncovers connections, counts and context in the raw data. It builds out of the box a semantic graph from hybrid data sources. Saffronstores the graph and its statistics in matrices that can be queried in real time even for Big Data. Connecting the DotsWe demonstrate the power of entity rank for real time search by the example of the London Bomber and Twitter sentiment analysis. Illuminating the Dots We show the power of Saffron’s model free approach for pattern recognition and prediction on a couple of real world examples like Boeing’s use case of predictive maintenance for aircraft and risk prediction at The Bill and Melinda Gates Foundation.

Pauls Bio: Dr. Paul Hofmann is an expert in AI, computer simulations and graphics. He is CTO of Saffron Technology, a Big Data predictive analytics firm named top 5 coolest vendors in Enterprise Information Management by Gartner. Before joining Saffron, Paul was VP of Research at SAP Labs in Silicon Valley. He has authored two books and numerous publications. Paul received his Ph.D. in Physics at the Darmstadt University of Technology.

Make sure to put April 24th for the next Scalability MeetUp at RedFin.